Friday, July 31, 2015

Singapore, Day 5

Today was a mixed bag ot talks.

Louxin Zhang started with a couple of proofs about what he called "stable" networks; and Stefan Grünewald developed his thoughts on quartet algoritms for splits graphs. At the other extreme, Nadine Ziemert talked entirely biology, introducing the audience to the problem of trying to study the evolution of secondary metabolites. In between, Eric Tannier tried to use horizontal gene transfer to date the nodes of networks, assuming that HGT requires a temporally consistent network. Francois-Joseph Lapointe produced the only really statistical talk of the week, trying to produce p-values for patterns on sequence similarity networks.

Daniel Huson popped in for the last day, and presented us with some ideas for the future development of both SplitsTree (unrooted networks) and Dendroscope (rooted networks). Apparently, the need is for SplitsTree to handle larger sets of trees, while for Dendroscope it is to produce networks from pairs of input trees. He also noted that there are still more networks being produced using median joining rather than neighbor-net, due to the amount of work being done on human mitochondrial sequences.

An interest was expressed in continuing the series of meetings on phylogenetic networks (Leiden 2012, Leiden 2014) — I first met most of the people working on networks in phylogenetics in Uppsala in 2004 (Phylogenetic Combinatorics and Applications).

Today we also celebrated Dan Gusfield's 2^6 birthday, with a strawberry cream cake.

So, all in all, a very successful meeting.

After the sessins finished, I went down to the Gardens By The Bay to look at the Supertree Grove. As you can see, a "super" tree is by any definition actually a network.

Thursday, July 30, 2015

Singapore, Day 4

There was more heavy maths today.

Charles Semple started by counting trees within specified types of network. In the process, he provided the first mathematical proof of the week (he actually provided two). He also raised the issue of what, exactly, is a phylogenetic network — we have had many mathematical restrictions placed on networks this week, and it is not always clear how any of them might relate to biological concepts.

Leo van Iersel tried constructing super-networks from incomplete sub-networks, sticking to algorithms rather than proofs. Yufeng Wu and Zhi-Zhong Chen later tried the same strategy for their networks, as did Lusheng Wang for pedigree comparison (he was the only person other than myself to even mention pedigrees).

Mike Steel considered under what circumstances a network can be viewed as a "tree with reticulations" rather than a non-tree network (ie. not every vertex is part of the same underlying tree); this led him to the interesting observation that whether a dataset can be represented by a tree can depend on the taxon sampling. He also looked at when a set of non-tree distances can appear to be tree-like, which is the sort of question that only a mathematician would ask.

Most of the audience interjections this week have come from Sagi Snir, and the rest of the speakers got to return the favor this afternoon, when he spoke about trying to reconstruct trees subject to large amounts of horizontal gene transfer. In the process, he also tried to "sketch" a mathematical proof, which turned into a full-sized painting, before moving on to his algorithm.